nanomedicine / en U of T researchers discover how the liver prevents nanoparticles from reaching cancer cells /news/unlocking-promise-cancer-fighting-nanoparticles <span class="field field--name-title field--type-string field--label-hidden">U of T researchers discover how the liver prevents nanoparticles from reaching cancer cells</span> <div class="field field--name-field-featured-picture field--type-image field--label-hidden field__item"> <img loading="eager" srcset="/sites/default/files/styles/news_banner_370/public/liver_cells_1140.jpg?h=3fcbca33&amp;itok=yYwkCDmu 370w, /sites/default/files/styles/news_banner_740/public/liver_cells_1140.jpg?h=3fcbca33&amp;itok=h-HvNIVZ 740w, /sites/default/files/styles/news_banner_1110/public/liver_cells_1140.jpg?h=3fcbca33&amp;itok=bSm4mcwp 1110w" sizes="(min-width:1200px) 1110px, (max-width: 1199px) 80vw, (max-width: 767px) 90vw, (max-width: 575px) 95vw" width="740" height="494" src="/sites/default/files/styles/news_banner_370/public/liver_cells_1140.jpg?h=3fcbca33&amp;itok=yYwkCDmu" alt="liver cells"> </div> <span class="field field--name-uid field--type-entity-reference field--label-hidden"><span>lavende4</span></span> <span class="field field--name-created field--type-created field--label-hidden"><time datetime="2016-08-15T11:24:50-04:00" title="Monday, August 15, 2016 - 11:24" class="datetime">Mon, 08/15/2016 - 11:24</time> </span> <div class="clearfix text-formatted field field--name-field-cutline-long field--type-text-long field--label-above"> <div class="field__label">Cutline</div> <div class="field__item">Microphotograph of human liver cells (Getty Images)</div> </div> <div class="field field--name-field-author-reporters field--type-entity-reference field--label-hidden field__items"> <div class="field__item"><a href="/news/authors-reporters/luke-ng" hreflang="en">Luke Ng</a></div> </div> <div class="field field--name-field-author-legacy field--type-string field--label-above"> <div class="field__label">Author legacy</div> <div class="field__item">Luke Ng</div> </div> <div class="field field--name-field-topic field--type-entity-reference field--label-above"> <div class="field__label">Topic</div> <div class="field__item"><a href="/news/topics/breaking-research" hreflang="en">Breaking Research</a></div> </div> <div class="field field--name-field-story-tags field--type-entity-reference field--label-hidden field__items"> <div class="field__item"><a href="/news/tags/ibbme" hreflang="en">IBBME</a></div> <div class="field__item"><a href="/news/tags/warren-chan" hreflang="en">Warren Chan</a></div> <div class="field__item"><a href="/news/tags/nanomedicine" hreflang="en">nanomedicine</a></div> <div class="field__item"><a href="/news/tags/university-health-network" hreflang="en">University Health Network</a></div> <div class="field__item"><a href="/news/tags/cancer" hreflang="en">Cancer</a></div> <div class="field__item"><a href="/news/tags/medical-research" hreflang="en">Medical Research</a></div> </div> <div class="clearfix text-formatted field field--name-body field--type-text-with-summary field--label-hidden field__item"><p>The emerging field of nanomedicine holds great promise in the battle against cancer. Particles the size of&nbsp;protein molecules can be customized to carry tumour-targeting drugs and destroy cancer cells without harming healthy tissue.</p> <p>But here’s the problem: when nanoparticles are administered into the body, <a href="http://www.ibbme.utoronto.ca/news/how-many-nanoparticle-based-drugs-reach-tumours-less-than-one-per-cent-u-of-t-study-shows/">more than 99 per cent of them become trapped</a> in non-targeted organs, such as the liver and spleen.&nbsp;These nanoparticles are not delivered to the site of action to carry out their intended function.</p> <p>To solve this problem, researchers at the ؿζSM and the University Health Network have figured out how the liver and spleen trap intact nanoparticles as they move through the organ. “If you want to unlock the promise of nanoparticles, you have to understand and solve the problem of the liver,” says Dr. Ian McGilvray, a transplant surgeon at the Toronto General Hospital and scientist at the Toronto General Research Institute (TGRI).</p> <p>In a recent paper&nbsp;in the journal <a href="http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4718.html"><em>Nature Materials</em></a>, the researchers&nbsp;say that as nanoparticles move through the liver sinusoid, the flow rate slows down 1,000 times, which increases the interaction of the nanoparticles all of types of liver cells. This was a surprising finding because the current thought is that Kupffer cells, responsible for toxin breakdown in the liver, are the ones that gobbles up the particles.&nbsp; This study found that liver B-cells and liver sinusoidal endothelial cells are also involved and that the cell phenotype also matters.</p> <p>“We know that the liver is the principle organ controlling what gets absorbed by our bodies and what gets filtered out—it governs our everyday biological functions,” says Dr.&nbsp;<strong>Kim Tsoi&nbsp;</strong>(below, with research partner&nbsp;<strong>Sonya MacParland</strong>), <span style="line-height: 20.8px;">a U of T orthopaedic surgery resident, and a first author of the paper, who completed her PhD in biomedical engineering with&nbsp;</span><strong style="line-height: 20.8px;">Warren Chan</strong><span style="line-height: 20.8px;">&nbsp;(IBBME)</span>. “But nanoparticle drug delivery is a newer approach and we haven’t had a clear picture of how they interact with the liver—until now.”</p> <p>Tsoi and&nbsp;MacParland&nbsp;first examined both the speed and location of their engineered nanoparticles as they moved through the liver.</p> <p><img alt class="media-image attr__typeof__foaf:Image img__fid__1712 img__view_mode__media_large attr__format__media_large" height="324" src="/sites/default/files/styles/large/public/Tsoi-MacParland-UofT-byPeterChurch2.jpeg?itok=0c70p2s2" typeof="foaf:Image" width="576" loading="lazy"></p> <p>“This gives us a target to focus on,” says MacParland, <span style="line-height: 20.8px;">an immunology post-doctoral fellow at U of T and TGRI</span>. “Knowing the specific cells to modify will allow us to eventually deliver more of the nanoparticles to their intended target, attacking only the pathogens or tumours, while bypassing healthy cells.”</p> <p>“Many prior studies that have tried to reduce nanomaterial clearance in the liver have focused on the particle design itself,” says Chan. “But our work now gives greater insight into the biological mechanisms underpinning our experimental observations — now we hope to use our fundamental findings to help design nanoparticles that work with the body, rather than against it.”</p> </div> <div class="field field--name-field-news-home-page-banner field--type-boolean field--label-above"> <div class="field__label">News home page banner</div> <div class="field__item">Off</div> </div> Mon, 15 Aug 2016 15:24:50 +0000 lavende4 99968 at